TY - GEN
T1 - Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic levels
AU - Bozdag, Serdar
AU - Li, Aiguo
AU - Riddick, Gregory
AU - Kotliarov, Yuri
AU - Baysan, Mehmet
AU - Iwamoto, Fabio M.
AU - Cam, Margaret C.
AU - Kotliarova, Svetlana
AU - Fine, Howard A.
PY - 2013
Y1 - 2013
N2 - Age is a powerful predictor of survival in glioblastoma multiforme (GBM) yet the biological basis for the difference in clinical outcome is mostly unknown. Discovering genes and pathways that would explain age-specific survival difference could generate opportunities for novel therapeutics for GBM. Here we have integrated gene expression, exon expression, microRNA expression, copy number alteration, SNP, whole exome sequence, and DNA methylation data sets of a cohort of GBM patients in The Cancer Genome Atlas (TCGA) project to discover age-specific signatures at the transcriptional, genetic, and epigenetic levels and validated our findings on the REMBRANDT data set. We found major age-specific signatures at all levels including age-specific hypermethylation in polycomb group protein target genes and the upregulation of angiogenesis-related genes in older GBMs. These age-specific differences in GBM, which are independent of molecular subtypes, may in part explain the preferential effects of anti-angiogenic agents in older GBM and pave the way to a better understanding of the unique biology and clinical behavior of older versus younger GBMs.
AB - Age is a powerful predictor of survival in glioblastoma multiforme (GBM) yet the biological basis for the difference in clinical outcome is mostly unknown. Discovering genes and pathways that would explain age-specific survival difference could generate opportunities for novel therapeutics for GBM. Here we have integrated gene expression, exon expression, microRNA expression, copy number alteration, SNP, whole exome sequence, and DNA methylation data sets of a cohort of GBM patients in The Cancer Genome Atlas (TCGA) project to discover age-specific signatures at the transcriptional, genetic, and epigenetic levels and validated our findings on the REMBRANDT data set. We found major age-specific signatures at all levels including age-specific hypermethylation in polycomb group protein target genes and the upregulation of angiogenesis-related genes in older GBMs. These age-specific differences in GBM, which are independent of molecular subtypes, may in part explain the preferential effects of anti-angiogenic agents in older GBM and pave the way to a better understanding of the unique biology and clinical behavior of older versus younger GBMs.
KW - Aging
KW - Copy number alteration
KW - Gene expression
KW - Glioblastoma
KW - Methylation
UR - http://www.scopus.com/inward/record.url?scp=84888163792&partnerID=8YFLogxK
U2 - 10.1145/2506583.2506659
DO - 10.1145/2506583.2506659
M3 - Conference contribution
AN - SCOPUS:84888163792
SN - 9781450324342
T3 - 2013 ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, ACM-BCB 2013
SP - 654
BT - 2013 ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, ACM-BCB 2013
T2 - 2013 4th ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, ACM-BCB 2013
Y2 - 22 September 2013 through 25 September 2013
ER -