Özet
The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.
Orijinal dil | İngilizce |
---|---|
Sayfa (başlangıç-bitiş) | 26-58 |
Sayfa sayısı | 33 |
Dergi | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Hacim | 668 |
DOI'lar | |
Yayın durumu | Yayınlandı - 11 Mar 2012 |
Finansman
AGATA and this work is supported by the European funding bodies and the EU Contract RII3-CT-2004-506065, the German BMBF under Grants 06K-167 and 06KY205I, the Swedish Research Council and the Knut and Alice Wallenberg Foundation, UK EPSRC Engineering and Physical Sciences Research Council, UK STFC Science and Technology Facilities Council, AWE plc, Scientific and Technological Research Council of Turkey (Proj. nr. 106T055) and Ankara University (BAP Proj. nr. 05B4240002), the Polish Ministry of Science and Higher Education under Grant DPN/N190/AGATA/2009, the Spanish MICINN under grants FPA2008-06419 and FPA2009-13377-C02-02, the Spanish Consolider-Ingenio 2010 Programme CPAN (contract number CSD2007-00042) the Generalitat Valenciana under Grant PROMETEO/2010/101, and research performed in the frame of the GSI-IN2P3 collaboration agreement number 02-42. A. Gadea and E. Farnea acknowledge the support of MICINN, Spain, and INFN, Italy, through the AIC10-D-000568 bilateral action.
Finansörler | Finansör numarası |
---|---|
AWE plc, Scientific and Technological Research Council of Turkey | 05B4240002 |
CPAN | CSD2007-00042 |
Polish Ministry of Science and Higher Education | DPN/N190/AGATA/2009 |
Engineering and Physical Sciences Research Council | |
Science and Technology Facilities Council | ST/I504916/1, ST/F004060/1, ST/F006950/1, ST/G000670/1, ST/G000727/1, ST/I504959/1, NuSTAR, ST/J000051/1, ST/J000094/1, ST/F004184/1, ST/F004192/1, ST/F012039/1, ST/I504940/1, ST/J000108/1, ST/J000159/1 |
European Commission | RII3-CT-2004-506065 |
Japan Society for the Promotion of Science | 11F01752 |
Bundesministerium für Bildung und Forschung | 06KY205I, 06K-167 |
Generalitat Valenciana | 02-42, PROMETEO/2010/101 |
Instituto Nazionale di Fisica Nucleare | AIC10-D-000568 |
Knut och Alice Wallenbergs Stiftelse | |
Vetenskapsrådet | |
Ministerio de Ciencia e Innovación | FPA2008-06419, FPA2009-13377-C02-02 |