Adaptive Kalman Filter with Probabilistic Gain Adjustment for Estimation of Satellite Position in the Presence of Measurement Faults

C. Hajiyev*, T. Y. Erkec, U. Hacizade, D. Cilden-Guler

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

In this study, a probabilistic adaptive filtering technique is described for the Extended Kalman filter (EKF) algorithm, which is used to estimate Low Earth Orbit (LEO) satellite position, velocity, and clock bias using Global Navigation Satellite System (GNSS) distance measurements. The proposed probabilistic adaptive extended Kalman filter (pAEKF) algorithm is based on tracking normalized innovation sequences in the filter and calculating the probability of normal operation of the estimation system. The filter gain is adjusted based on this probability to maintain the filter's tracking performance despite inaccurate measurements.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2024 33rd International Scientific Conference Electronics, ET 2024 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350376449
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik33rd International Scientific Conference Electronics, ET 2024 - Sozopol, Bulgaria
Süre: 17 Eyl 202419 Eyl 2024

Yayın serisi

Adı2024 33rd International Scientific Conference Electronics, ET 2024 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???33rd International Scientific Conference Electronics, ET 2024
Ülke/BölgeBulgaria
ŞehirSozopol
Periyot17/09/2419/09/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

Adaptive Kalman Filter with Probabilistic Gain Adjustment for Estimation of Satellite Position in the Presence of Measurement Faults' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap