Active manifold learning for hyperspectral image classification

Zhou Zhang, Gulsen Taskin*, Melba M. Crawford

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Hyperspectral image classification via supervised approaches is often affected by the high dimensionality of the spectral signatures and the relative scarcity of training samples. Dimensionality reduction (DR) and active learning (AL) are two techniques that have been investigated independently to address these two problems. Considering the nonlinear property of the hyperspectral data and the necessity of applying AL adaptively, in this paper, we propose to integrate manifold and active learning into a unique framework to alleviate the aforementioned two issues simultaneously. In particular, supervised Isomap is adopted for DR for the training set, followed by an out-of-sample extension approach to project the large amount of unlabeled samples into previously learned embedding space. Finally, AL is performed in conjunction with k-nearest neighbor (kNN) classification in the embedded feature space. Experiments on a benchmark hyperspectral dataset illustrate the effectiveness of the proposed framework in terms of DR and the feature space refinement.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar2587-2590
Sayfa sayısı4
ISBN (Elektronik)9781538671504
DOI'lar
Yayın durumuYayınlandı - 31 Eki 2018
Etkinlik38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Spain
Süre: 22 Tem 201827 Tem 2018

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)
Hacim2018-July

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Ülke/BölgeSpain
ŞehirValencia
Periyot22/07/1827/07/18

Bibliyografik not

Publisher Copyright:
© 2018 IEEE

Parmak izi

Active manifold learning for hyperspectral image classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap