A wavelet-based radial-basis function neural network approach to the inverse scattering of conducting cylinders

Ulaş Aşik*, Tayfun Günel, Işin Erer

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

14 Atıf (Scopus)

Özet

A new approach, based on the radial-bias function neural network (RBF-NN) combined with wavelet transform, is presented for the estimation of the locations and radii of conducting cylindrical scatterers. The discrete wavelet transform coefficients of the electric-field values scattered by the cylinder are fed into the RBF-NN, whose outputs are the location and the radius of the cylinder. The efficiency of the proposed approach is compared with the approach where the field values are directly used. The performance of the wavelet-based approach for noisy field measurements is also investigated.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)506-511
Sayfa sayısı6
DergiMicrowave and Optical Technology Letters
Hacim41
Basın numarası6
DOI'lar
Yayın durumuYayınlandı - 20 Haz 2004

Parmak izi

A wavelet-based radial-basis function neural network approach to the inverse scattering of conducting cylinders' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap