A Turkish handprint character recognition system

Abdulkerim Çapar*, Kadim Taşdemir, Özlem Kilic, Muhittin Gökmen

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümBölümbilirkişi

5 Atıf (Scopus)

Özet

This paper presents a study for recognizing isolated Turkish handwritten uppercase letters. In the study, first of all, a Turkish Handprint Character Database has been created from the students in Istanbul Technical University (ITU). There are about 20000 uppercase and 7000 digit samples in this database. Several feature extraction and classification techniques are realized and combined to find the best recognition system for Turkish characters. Features, obtained from Karhunen-Loéve Transform, Zernike Moments, Angular Radial Transform and Geometric Features, are classified with Artificial Neural Networks, K-Nearest Neighbor, Nearest Mean, Bayes, Parzen and Size Dependent Negative Log-Likelihood methods. Geometric moments, which are suitable for Turkish characters, are formed. KLT features are fused with other features since KLT gives the best recognition rate but has no information about the shape of the character where other methods have. The fused features of KLT and ART classified by SDNLL gives the best result for Turkish characters in the experiments.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditörlerAdnan Yazici, Cevat Sener
YayınlayanSpringer Verlag
Sayfalar447-456
Sayfa sayısı10
ISBN (Basılı)3540204091, 9783540397373
DOI'lar
Yayın durumuYayınlandı - 2003

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim2869
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

Parmak izi

A Turkish handprint character recognition system' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap