A stabilized discontinuous galerkin method for the nonlinear advection-diffusion processes

Huseyin Tunc, Murat Sari

Araştırma sonucu: Dergiye katkıMakalebilirkişi

2 Atıf (Scopus)

Özet

This article presents a hybridization of a local discontinu- ous Galerkin method (LDG) with the Ø method to capture nonlinear behavior of the advection-diffusion processes. The predetermined fixed ux selection is extended to the generalized problem-dependent ux se- lection in the LDG algorithm. The derived technique has been shown to be unconditionally stable through the L2 stability analysis. Two il- lustrative test problems are considered to demonstrate the effciency of the currently produced technique for both advection and diffiusion dom- inated processes.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)24-45
Sayfa sayısı22
DergiProceedings of the Institute of Mathematics and Mechanics
Hacim47
Basın numarası1
Yayın durumuYayınlandı - 2021
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2021, Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan. All rights reserved.

Parmak izi

A stabilized discontinuous galerkin method for the nonlinear advection-diffusion processes' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap