A Smart City Application: Business Location Estimator Using Machine Learning Techniques

Tugce Bilen, Muge Erel-Ozcevik, Yusuf Yaslan, Sema F. Oktug

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

12 Atıf (Scopus)

Özet

In smart cities, the business location is an important component of the complex decision process for the entrepreneurs. If a business such as shopping center, restau-rant, coffee shop, hospital, clothing etc. is opened in optimal location; not only the satisfaction level of the customers are enhanced with increased life quality and convenience, but also it maximizes the profit of the entrepreneurs. However, it is complex and long-term decision to find optimal location for a business. Therefore; we propose a smart business application that uses machine learning techniques to estimate the location of a business. The proposed system collects key feature values for a specific business and learns a prediction model for future data. It estimates features and suggests clusters of districts that have optimal locations for that specific business. The proposed system is evaluated on a use case that estimates the best possible locations of a restaurant according to main characteristics taken as inputs from entrepreneurs via a Web based application. These characteristics are Meal Price per customer, HouseHold Type, Gender, and Age. The first phase of decision process is estimating mentioned features such as House Price per district and local population belonging to different HouseHold type, Gender, and Age with less error rates for the consecutive years. Here; we determine an optimal regression model choosing from SMORegression (SMOReg), MultiLayerPerceptron (MLP), and multivariate Linear Regression (Linear) according to Relative Absolute Error (RAE %) parameter, for each feature. The second phase clusters districts according to these estimated features by using hierarchical tree. As a result; the estimated best suggestions for restaurant locations which have similar features, are shown to entrepreneurs via our Web based application. It should be noted that, the application can produce generic solution for the needs of entrepreneurs.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar1314-1321
Sayfa sayısı8
ISBN (Elektronik)9781538666142
DOI'lar
Yayın durumuYayınlandı - 22 Oca 2019
Etkinlik20th International Conference on High Performance Computing and Communications, 16th IEEE International Conference on Smart City and 4th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018 - Exeter, United Kingdom
Süre: 28 Haz 201830 Haz 2018

Yayın serisi

AdıProceedings - 20th International Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???20th International Conference on High Performance Computing and Communications, 16th IEEE International Conference on Smart City and 4th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018
Ülke/BölgeUnited Kingdom
ŞehirExeter
Periyot28/06/1830/06/18

Bibliyografik not

Publisher Copyright:
© 2018 IEEE.

Finansman

This project is supported by the Istanbul Technical University Scientific Research Projects Unit. Moreover, M. Erel-Özc¸evik is supported by ASELSAN Graduate Scholarship for Turkish Academicians.

FinansörlerFinansör numarası
Istanbul Technical University Scientific Research Projects Unit

    Parmak izi

    A Smart City Application: Business Location Estimator Using Machine Learning Techniques' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap