TY - JOUR
T1 - A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding
AU - Marc, Odin
AU - Hovius, Niels
AU - Meunier, Patrick
AU - Gorum, Tolga
AU - Uchida, Taro
N1 - Publisher Copyright:
©2016. American Geophysical Union. All Rights Reserved.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - We present a new, seismologically consistent expression for the total area and volume of populations of earthquake-triggered landslides. This model builds on a set of scaling relationships between key parameters, such as landslide spatial density, seismic ground acceleration, fault length, earthquake source depth, and seismic moment. To assess the model we have assembled and normalized a catalog of landslide inventories for 40 shallow, continental earthquakes. Low landscape steepness causes systematic overprediction of the total area and volume of landslides. When this effect is accounted for, the model predicts the total landslide volume of 63% of 40 cases to within a factor 2 of the volume estimated from observations (R2=0.76). The prediction of total landslide area is also sensitive to the landscape steepness, but less so than the total volume, and it appears to be sensitive to controls on the landslide size-frequency distribution, and possibly the shaking duration. Some outliers are likely associated with exceptionally strong rock mass in the epicentral area, while others may be related to seismic source complexities ignored by the model. However, the close match between prediction and estimate for about two thirds of cases in our database suggests that rock mass strength is similar in many cases and that our simple seismic model is often adequate, despite the variety of lithologies and tectonic settings covered. This makes our expression suitable for integration into landscape evolution models and application to the anticipation or rapid assessment of secondary hazards associated with earthquakes.
AB - We present a new, seismologically consistent expression for the total area and volume of populations of earthquake-triggered landslides. This model builds on a set of scaling relationships between key parameters, such as landslide spatial density, seismic ground acceleration, fault length, earthquake source depth, and seismic moment. To assess the model we have assembled and normalized a catalog of landslide inventories for 40 shallow, continental earthquakes. Low landscape steepness causes systematic overprediction of the total area and volume of landslides. When this effect is accounted for, the model predicts the total landslide volume of 63% of 40 cases to within a factor 2 of the volume estimated from observations (R2=0.76). The prediction of total landslide area is also sensitive to the landscape steepness, but less so than the total volume, and it appears to be sensitive to controls on the landslide size-frequency distribution, and possibly the shaking duration. Some outliers are likely associated with exceptionally strong rock mass in the epicentral area, while others may be related to seismic source complexities ignored by the model. However, the close match between prediction and estimate for about two thirds of cases in our database suggests that rock mass strength is similar in many cases and that our simple seismic model is often adequate, despite the variety of lithologies and tectonic settings covered. This makes our expression suitable for integration into landscape evolution models and application to the anticipation or rapid assessment of secondary hazards associated with earthquakes.
KW - earthquake strong ground motion
KW - earthquake-induced landslides
KW - landslide area
KW - landslide volume
KW - physical modeling
KW - topographic slope
UR - http://www.scopus.com/inward/record.url?scp=84964329726&partnerID=8YFLogxK
U2 - 10.1002/2015JF003732
DO - 10.1002/2015JF003732
M3 - Article
AN - SCOPUS:84964329726
SN - 2169-9003
VL - 121
SP - 640
EP - 663
JO - Journal of Geophysical Research: Earth Surface
JF - Journal of Geophysical Research: Earth Surface
IS - 4
ER -