A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model

Gul Inan*, John Preisser, Kalyan Das

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

4 Atıf (Scopus)

Özet

Marginalized zero-inflated count regression models (Long et al. in Stat Med 33(29):5151–5165, 2014) provide direct inference on overall exposure effects. Unlike standard zero-inflated models, marginalized models specify a regression model component for the marginal mean in addition to a component for the probability of an excess zero. This study proposes a score test for testing a marginalized zero-inflated Poisson model against a marginalized zero-inflated negative binomial model for model selection based on an assessment of over-dispersion. The sampling distribution and empirical power of the proposed score test are investigated via a Monte Carlo simulation study, and the procedure is illustrated with data from a horticultural experiment. Supplementary materials accompanying this paper appear on-line.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)113-128
Sayfa sayısı16
DergiJournal of Agricultural, Biological, and Environmental Statistics
Hacim23
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - 1 Mar 2018
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2017, International Biometric Society.

Parmak izi

A Score Test for Testing a Marginalized Zero-Inflated Poisson Regression Model Against a Marginalized Zero-Inflated Negative Binomial Regression Model' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap