A Real-Time Aerial Semantic Segmentation System Based on U-Net Deep Learning Using Drone Images

Muhammet Tahir Güneşer, Chihat Şeker, Mohammed Ayad Alkhafaji*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Image segmentation at the pixel level is a time-consuming and difficult task in computer vision and image processing. Aerial (satellite/drone) photo segmentation is considered in this paper. Data from high-resolution remote sensing has enabled new applications such as more detailed per-pixel object classification. U-Net with VGG16 has made segmentation and categorization of images much more efficient and intelligent. U-Net models with pre-trained VGG16 backbones perform best across all tested scenarios. Adding the near-infrared band improves prediction results slightly compared with using RGB image bands alone. The ability to transfer images between sensors, especially between satellites and aerial images, could be improved through train-time enhancement and contrast enhancement. Further improving performance could be achieved by adding noisy training data from free online resources.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent Systems - Proceedings of 4th International Conference on Machine Learning, IoT and Big Data ICMIB 2024
EditörlerSiba Kumar Udgata, Srinivas Sethi, George Ghinea, Sanjay Kumar Kuanar
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar349-362
Sayfa sayısı14
ISBN (Basılı)9789819781591
DOI'lar
Yayın durumuYayınlandı - 2025
Etkinlik4th International Conference on Machine Learning, Internet of Things and Big Data, ICMIB 2024 - Gunupur, India
Süre: 8 Mar 202410 Mar 2024

Yayın serisi

AdıLecture Notes in Networks and Systems
Hacim1149
ISSN (Basılı)2367-3370
ISSN (Elektronik)2367-3389

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???4th International Conference on Machine Learning, Internet of Things and Big Data, ICMIB 2024
Ülke/BölgeIndia
ŞehirGunupur
Periyot8/03/2410/03/24

Bibliyografik not

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.

Parmak izi

A Real-Time Aerial Semantic Segmentation System Based on U-Net Deep Learning Using Drone Images' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap