A novel signed higher-radix full-adder algorithm and implementation with current-mode multi-valued logic circuits

Turgay Temel*, Avni Morgul, Nizamettin Aydin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

7 Atıf (Scopus)

Özet

A higher-radix algebra for full-addition of two numbers is described and realised by combining multi-valued logic min, max, literal and cyclic operators in terms disjoint terms. The latter operator is designed by using a current-mode threshold circuit while the other operator is realised by only voltage-mode switching circuits. The threshold circuit employed allows for much higher radices compared to architetures employing voltage-mode binary logic switching circuits as well as better mismatch properties compared to previous threshold circuits. Due to disjoint terms involved, multi-valued logic min and max operators can be replaced with ordinary ordinary transmission operation and addtion, respectively. Resultant a single-digit, radix-8 full-adder and its 3-bit counterpart voltage-mode circuits are realised and compared. The algorithm is also exploited for a multi-digit case and its HSPice simulation results are presented.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings of the EUROMICRO Systems on Digital System Design, DSD 2004
EditörlerH. Selvaraj
Sayfalar80-87
Sayfa sayısı8
DOI'lar
Yayın durumuYayınlandı - 2004
Harici olarak yayınlandıEvet
EtkinlikProceedings of the EUROMICRO Systems on Digital System Design, DSD 2004 - Rennes, France
Süre: 31 Ağu 20043 Eyl 2004

Yayın serisi

AdıProceedings of the EUROMICRO Systems on Digital System Design, DSD 2004

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Proceedings of the EUROMICRO Systems on Digital System Design, DSD 2004
Ülke/BölgeFrance
ŞehirRennes
Periyot31/08/043/09/04

Parmak izi

A novel signed higher-radix full-adder algorithm and implementation with current-mode multi-valued logic circuits' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap