TY - JOUR
T1 - A Novel Sea Horse Optimizer Based Load Frequency Controller for Two-Area Power System with PV and Thermal Units
AU - Andic, Cenk
AU - Ozumcan, Sercan
AU - Varan, Metin
AU - Ozturk, Ali
N1 - Publisher Copyright:
© 2024, Association for Scientific Computing Electronics and Engineering (ASCEE). All rights reserved.
PY - 2024
Y1 - 2024
N2 - This study introduces the Sea Horse Optimizer (SHO), a novel optimization algorithm designed for Load Frequency Control (LFC) in two-area power systems including photovoltaic and thermal units. Inspired by the interactive behaviors of seahorses, this population-based metaheuristic algorithm leverages strategies like Brownian motion and Levy flights to efficiently search for optimal solutions, demonstrating quicker and more stable identification of global and local optima than traditional algorithms. The proposed SHO algorithm was tested in a two-region power system containing a photovoltaic system and a reheat thermal unit under three different scenarios. In the first scenario, the frequency response of the algorithm to a 0.1 p.u. load change in both regions was examined. In the second scenario, the algorithm's frequency response to sudden load changes from 0.1 p.u. to 0.4 p.u. was tested. Finally, the algorithm's frequency response was examined against different levels of solar irradiance for sensitivity analysis. This study compared the performance of the SHO-optimized controller with the optimization algorithms reported in the literature, including the Genetic Algorithm (GA), Firefly Algorithm (FA), Whale Optimization Algorithm (WOA), and Modified Whale Optimization Algorithm (MWOA). In this context, the optimization of PI controller gain parameters based on the ITAE metric resulted in SHO algorithm achieving the best performance with values of 2.5308, followed by WOA at 4.1211, FA at 7.4259, and GA at 12.1244. In tests, SHO significantly outperformed these algorithms in key performance metrics, such as Settling Time, Overshoot (M+), and Undershoot (M-). Specifically, SHO achieved 98.94% better overshoot and 85.25% reduced undershoot than GA, and concluded settling times 52.79% faster than GA in the first scenario. Similar superior outcomes were noted in subsequent tests. These results underline SHO's efficacy in enhancing system stability and control performance, marking it as a significant advancement over conventional LFC methods.
AB - This study introduces the Sea Horse Optimizer (SHO), a novel optimization algorithm designed for Load Frequency Control (LFC) in two-area power systems including photovoltaic and thermal units. Inspired by the interactive behaviors of seahorses, this population-based metaheuristic algorithm leverages strategies like Brownian motion and Levy flights to efficiently search for optimal solutions, demonstrating quicker and more stable identification of global and local optima than traditional algorithms. The proposed SHO algorithm was tested in a two-region power system containing a photovoltaic system and a reheat thermal unit under three different scenarios. In the first scenario, the frequency response of the algorithm to a 0.1 p.u. load change in both regions was examined. In the second scenario, the algorithm's frequency response to sudden load changes from 0.1 p.u. to 0.4 p.u. was tested. Finally, the algorithm's frequency response was examined against different levels of solar irradiance for sensitivity analysis. This study compared the performance of the SHO-optimized controller with the optimization algorithms reported in the literature, including the Genetic Algorithm (GA), Firefly Algorithm (FA), Whale Optimization Algorithm (WOA), and Modified Whale Optimization Algorithm (MWOA). In this context, the optimization of PI controller gain parameters based on the ITAE metric resulted in SHO algorithm achieving the best performance with values of 2.5308, followed by WOA at 4.1211, FA at 7.4259, and GA at 12.1244. In tests, SHO significantly outperformed these algorithms in key performance metrics, such as Settling Time, Overshoot (M+), and Undershoot (M-). Specifically, SHO achieved 98.94% better overshoot and 85.25% reduced undershoot than GA, and concluded settling times 52.79% faster than GA in the first scenario. Similar superior outcomes were noted in subsequent tests. These results underline SHO's efficacy in enhancing system stability and control performance, marking it as a significant advancement over conventional LFC methods.
KW - Load Frequency Control
KW - PV System
KW - Sea Horse Optimizer
KW - Two-are Power System
UR - http://www.scopus.com/inward/record.url?scp=85196810958&partnerID=8YFLogxK
U2 - 10.31763/ijrcs.v4i2.1341
DO - 10.31763/ijrcs.v4i2.1341
M3 - Article
AN - SCOPUS:85196810958
SN - 2775-2658
VL - 4
SP - 606
EP - 627
JO - International Journal of Robotics and Control Systems
JF - International Journal of Robotics and Control Systems
IS - 2
ER -