A novel information-theoretic clustering algorithm for robust, unsupervised classification

Turgay Temel*, Nizamettin Aydin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

A new information-theoretic, unsupervised, subtractive clustering algorithm is proposed. The algorithm eliminates threshold constraint to detect possible cluster members. Cluster centers are formed with minimum entropy. Instead of using a fixed-threshold, a decision region is formed with the use of maximum mutual information. Cluster members are chosen with a relative-cost assigned in partitions of data set. The algorithm yields more reliably distributed cluster numbers in statistical sense, hence reducing further computation for validation, which is justified for a set of synthetic data.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2007 9th International Symposium on Signal Processing and its Applications, ISSPA 2007, Proceedings
DOI'lar
Yayın durumuYayınlandı - 2007
Harici olarak yayınlandıEvet
Etkinlik2007 9th International Symposium on Signal Processing and its Applications, ISSPA 2007 - Sharjah, United Arab Emirates
Süre: 12 Şub 200715 Şub 2007

Yayın serisi

Adı2007 9th International Symposium on Signal Processing and its Applications, ISSPA 2007, Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2007 9th International Symposium on Signal Processing and its Applications, ISSPA 2007
Ülke/BölgeUnited Arab Emirates
ŞehirSharjah
Periyot12/02/0715/02/07

Parmak izi

A novel information-theoretic clustering algorithm for robust, unsupervised classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap