TY - GEN
T1 - A novel framework for spammer detection in social bookmarking systems
AU - Gargari, Soghra M.
AU - Öǧüdücü, Şule G̈und̈uz
PY - 2012
Y1 - 2012
N2 - Social Bookmarking systems enable users to store, organize and search their resources. Furthermore, a social bookmarking system allows users to share their resources with others and even join groups of people with similar interests. The data size in social bookmarking systems has been increased sharply in recent years with the usage of such systems. However, such systems attract spammers due to their ease of use and popularity. Spammers have started misleading search engines and other bookmarking system users in order to direct web traffic towards their own pages. Strong prevention and detection methods in social bookmarking systems are indispensable in order to stop spam activities and guaranty the accuracy and reliability of information. In this paper, we introduce a novel framework for spam detection task in social bookmarking systems. Here, we propose a set of new features to improve the accuracy of spammer detection. Our experiments show that our features demonstrate a high discriminative power. A performance evaluation of our proposed method over different spammer detection methods indicate that the proposed framework yields an improvement of the prediction accuracy.
AB - Social Bookmarking systems enable users to store, organize and search their resources. Furthermore, a social bookmarking system allows users to share their resources with others and even join groups of people with similar interests. The data size in social bookmarking systems has been increased sharply in recent years with the usage of such systems. However, such systems attract spammers due to their ease of use and popularity. Spammers have started misleading search engines and other bookmarking system users in order to direct web traffic towards their own pages. Strong prevention and detection methods in social bookmarking systems are indispensable in order to stop spam activities and guaranty the accuracy and reliability of information. In this paper, we introduce a novel framework for spam detection task in social bookmarking systems. Here, we propose a set of new features to improve the accuracy of spammer detection. Our experiments show that our features demonstrate a high discriminative power. A performance evaluation of our proposed method over different spammer detection methods indicate that the proposed framework yields an improvement of the prediction accuracy.
KW - Bookmarking systems
KW - Features
KW - Spammer detection
KW - Web2
UR - http://www.scopus.com/inward/record.url?scp=84874231719&partnerID=8YFLogxK
U2 - 10.1109/ASONAM.2012.121
DO - 10.1109/ASONAM.2012.121
M3 - Conference contribution
AN - SCOPUS:84874231719
SN - 9780769547992
T3 - Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012
SP - 827
EP - 834
BT - Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012
T2 - 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012
Y2 - 26 August 2012 through 29 August 2012
ER -