A new non-archimedean metric on persistent homology

İsmail Güzel*, Atabey Kaygun

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

2 Atıf (Scopus)

Özet

In this article, we define a new non-archimedean metric structure, called cophenetic metric, on persistent homology classes of all degrees. We then show that zeroth persistent homology together with the cophenetic metric and hierarchical clustering algorithms with a number of different metrics do deliver statistically verifiable commensurate topological information based on experimental results we obtained on different datasets. We also observe that the resulting clusters coming from cophenetic distance do shine in terms of different evaluation measures such as silhouette score and the Rand index. Moreover, since the cophenetic metric is defined for all homology degrees, one can now display the inter-relations of persistent homology classes in all degrees via rooted trees.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1963-1983
Sayfa sayısı21
DergiComputational Statistics
Hacim37
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - Eyl 2022

Bibliyografik not

Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Finansman

The first author was supported by Research Fund Project Number TDK-2020-42698 of the Istanbul Technical University.

FinansörlerFinansör numarası
Istanbul Teknik Üniversitesi

    Parmak izi

    A new non-archimedean metric on persistent homology' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap