A new graph-based evolutionary approach to sequence clustering

A. Şima Uyar*, Şule Gündüz Öǧüdücü

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

8 Atıf (Scopus)

Özet

Clustering methods provide users with methods to summarize and organize the huge amount of data in order to help them find what they are looking for. However, one of the drawbacks of clustering algorithms is that the result may vary greatly when using different clustering criteria. In this paper, we present a new clustering algorithm based on graph partitioning approach that only considers the pairwise similarities. The algorithm makes no assumptions about the size or the number of clusters. Besides this, the algorithm can make use of multiple clustering criteria functions. We will present experimental results on a synthetic data set and a real world web log data. Our experiments indicate that our clustering algorithm can efficiently cluster data items without any constraints on the number of clusters.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - ICMLA 2005
Ana bilgisayar yayını alt yazısıFourth International Conference on Machine Learning and Applications
Sayfalar273-278
Sayfa sayısı6
DOI'lar
Yayın durumuYayınlandı - 2005
EtkinlikICMLA 2005: 4th International Conference on Machine Learning and Applications - Los Angeles, CA, United States
Süre: 15 Ara 200517 Ara 2005

Yayın serisi

AdıProceedings - ICMLA 2005: Fourth International Conference on Machine Learning and Applications
Hacim2005

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???ICMLA 2005: 4th International Conference on Machine Learning and Applications
Ülke/BölgeUnited States
ŞehirLos Angeles, CA
Periyot15/12/0517/12/05

Parmak izi

A new graph-based evolutionary approach to sequence clustering' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap