Özet
Clutter decreases severely the performance of target detection algorithms in ground-penetrating radar (GPR) imaging systems. Low rank and sparse decomposition (LRSD) methods divide the data into its clutter and target components by rank minimization with sparsity constraint. This paper proposes a direct solution for LRSD decomposition of the GPR data unlike robust principal component analysis (RPCA) which uses a nuclear norm relaxation. The non convex optimization problem is solved by successive partial singular value decompositions (SVD)s and soft thresholding operations and does not require any parameter computation. The visual and numerical comparisons for both simulated and real data show the superiority of the direct robust matrix factorization (DRMF) over the relaxation solution RPCA as well as over the traditional low rank methods SVD and PCA.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | 2022 30th Telecommunications Forum, TELFOR 2022 - Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Elektronik) | 9781665472739 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2022 |
Etkinlik | 30th Telecommunications Forum, TELFOR 2022 - Belgrade, Serbia Süre: 15 Kas 2022 → 16 Kas 2022 |
Yayın serisi
Adı | 2022 30th Telecommunications Forum, TELFOR 2022 - Proceedings |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 30th Telecommunications Forum, TELFOR 2022 |
---|---|
Ülke/Bölge | Serbia |
Şehir | Belgrade |
Periyot | 15/11/22 → 16/11/22 |
Bibliyografik not
Publisher Copyright:© 2022 IEEE.
Finansman
VI. ACKNOWLEDGMENT This work was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No.120E234.
Finansörler | Finansör numarası |
---|---|
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | 120E234 |