A New Clutter Removal Method Based on Direct Robust Matrix Factorization for Buried Target Detection

Deniz Kumlu, Isin Erer

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Clutter decreases severely the performance of target detection algorithms in ground-penetrating radar (GPR) imaging systems. Low rank and sparse decomposition (LRSD) methods divide the data into its clutter and target components by rank minimization with sparsity constraint. This paper proposes a direct solution for LRSD decomposition of the GPR data unlike robust principal component analysis (RPCA) which uses a nuclear norm relaxation. The non convex optimization problem is solved by successive partial singular value decompositions (SVD)s and soft thresholding operations and does not require any parameter computation. The visual and numerical comparisons for both simulated and real data show the superiority of the direct robust matrix factorization (DRMF) over the relaxation solution RPCA as well as over the traditional low rank methods SVD and PCA.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2022 30th Telecommunications Forum, TELFOR 2022 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781665472739
DOI'lar
Yayın durumuYayınlandı - 2022
Etkinlik30th Telecommunications Forum, TELFOR 2022 - Belgrade, Serbia
Süre: 15 Kas 202216 Kas 2022

Yayın serisi

Adı2022 30th Telecommunications Forum, TELFOR 2022 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???30th Telecommunications Forum, TELFOR 2022
Ülke/BölgeSerbia
ŞehirBelgrade
Periyot15/11/2216/11/22

Bibliyografik not

Publisher Copyright:
© 2022 IEEE.

Finansman

VI. ACKNOWLEDGMENT This work was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No.120E234.

FinansörlerFinansör numarası
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu120E234

    Parmak izi

    A New Clutter Removal Method Based on Direct Robust Matrix Factorization for Buried Target Detection' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap