A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop Problems

Cengiz Kahraman*, Orhan Engin, Mustafa Kerim Yılmaz

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

1 Atıf (Scopus)

Özet

In this paper a new artificial immune system (AIS) algorithm is proposed to solve multi objective fuzzy flow shop scheduling problems. A new mutation operator is also described for this AIS. Fuzzy sets are used to model processing times and due dates. The objectives are to minimize the average tardiness and the number of tardy jobs. The developed new AIS algorithm is tested on real world data collected at an engine cylinder liner manufacturing process. The feasibility and effectiveness of the proposed AIS is demonstrated by comparing it with genetic algorithms. Computational results demonstrate that the proposed AIS algorithm is more effective meta-heuristic for multi objective flow shop scheduling problems with fuzzy processing time and due date.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)236-247
Sayfa sayısı12
DergiInternational Journal of Computational Intelligence Systems
Hacim2
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - Eki 2009

Bibliyografik not

Publisher Copyright:
© 2009, the authors.

Parmak izi

A New Artificial Immune System Algorithm for Multiobjective Fuzzy Flow Shop Problems' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap