A neurocomputational model of nicotine addiction based on reinforcement learning

Selin Metin*, Neslihan Serap Şengör

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Continuous exposure to nicotine causes behavioral choice to be modified by dopamine to become rigid, resulting in addiction. In this work, a computational model for nicotine addiction is proposed and the proposed model captures the effect of continuous nicotine exposure in becoming addict through reinforcement learning. The computational model is composed of three subsystems each corresponding to neural substrates taking part in nicotine addiction and these subsystems are realized by nonlinear dynamical systems. Even though the model is sufficient in acquiring addiction, it needs to be further developed to give a better explanation for the process responsible in turning a random choice into a compulsive behavior.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıArtificial Neural Networks, ICANN 2010 - 20th International Conference, Proceedings
Sayfalar228-233
Sayfa sayısı6
BaskıPART 2
DOI'lar
Yayın durumuYayınlandı - 2010
Etkinlik20th International Conference on Artificial Neural Networks, ICANN 2010 - Thessaloniki, Greece
Süre: 15 Eyl 201018 Eyl 2010

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SayıPART 2
Hacim6353 LNCS
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???20th International Conference on Artificial Neural Networks, ICANN 2010
Ülke/BölgeGreece
ŞehirThessaloniki
Periyot15/09/1018/09/10

Parmak izi

A neurocomputational model of nicotine addiction based on reinforcement learning' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap