A multilayer incremental neural network architecture for classification

Tamer Olmez*, Ertugrul Yazgan, Okan K. Ersoy

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

1 Atıf (Scopus)

Özet

A new multilayer incremental neural network (MINN) architecture and its performance in classification of biomedical images is discussed. The MINN consists of an input layer, two hidden layers and an output layer. The first stage between the input and first hidden layer consists of perceptrons. The number of perceptrons and their weights are determined by defining a fitness function which is maximized by the genetic algorithm (GA). The second stage involves feature vectors which are the codewords obtained automaticaly after learning the first stage. The last stage consists of OR gates which combine the nodes of the second hidden layer representing the same class. The comparative performance results of the MINN and the backpropagation (BP) network indicates that the MINN results in faster learning, much simpler network and equal or better classification performance.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)5-9
Sayfa sayısı5
DergiNeural Processing Letters
Hacim2
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - Mar 1995

Parmak izi

A multilayer incremental neural network architecture for classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap