A multi-spectral myelin annotation tool for machine learning based myelin quantification

Abdulkerim Çapar, Sibel Çimen, Zeynep Aladağ, Dursun Ali Ekinci, Umut Engin Ayten, Bilal Ersen Kerman, Behçet Uğur Töreyin

Araştırma sonucu: Dergiye katkıMakalebilirkişi

1 Atıf (Scopus)

Özet

Myelin is an essential component of the nervous system and myelin damage causes demyelination diseases. Myelin is a sheet of oligodendrocyte membrane wrapped around the neuronal axon. In the fluorescent images, experts manually identify myelin by co-localization of oligodendrocyte and axonal membranes that fit certain shape and size criteria. Because myelin wriggles along x-y-z axes, machine learning is ideal for its segmentation. However, machine-learning methods, especially convolutional neural networks (CNNs), require a high number of annotated images, which necessitate expert labor. To facilitate myelin annotation, we developed a workflow and software for myelin ground truth extraction from multi-spectral fluorescent images. Additionally, to the best of our knowledge, for the first time, a set of annotated myelin ground truths for machine learning applications were shared with the community.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1492
Sayfa sayısı1
DergiF1000Research
Hacim9
DOI'lar
Yayın durumuYayınlandı - 2020

Bibliyografik not

Publisher Copyright:
Copyright: © 2023 Çapar A et al.

Parmak izi

A multi-spectral myelin annotation tool for machine learning based myelin quantification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap