A low-complexity KL expansion-based channel estimator for OFDM systems

Habib Şenol*, Hakan A. Çirpan, Erdal Panayirci

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

13 Atıf (Scopus)

Özet

This paper first proposes a computationally efficient, pilot-aided linear minimum mean square error (MMSE) batch channel estimation algorithm for OFDM systems in unknown wireless fading channels. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Moreover, optimal rank reduction is achieved by exploiting the optimal truncation property of the KL expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach is studied through analytical and experimental results. We then consider the stochastic Cramér-Rao bound and derive the closed-form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance. To further reduce the complexity, we extend the batch linear MMSE to the sequential linear MMSE estimator. With the fast convergence property and the simple structure, the sequential linear MMSE estimator provides an attractive alternative to the implementation of channel estimator.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)163-174
Sayfa sayısı12
DergiEurasip Journal on Wireless Communications and Networking
Hacim2005
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - 15 Nis 2005
Harici olarak yayınlandıEvet

Parmak izi

A low-complexity KL expansion-based channel estimator for OFDM systems' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap