A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems

Mehmet Fatih Karaaslan*, Fatih Celiker, Muhammet Kurulay

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

4 Atıf (Scopus)

Özet

In this paper, we present a hybridizable discontinuous Galerkin (HDG) method for solving a class of fractional boundary value problems involving Caputo derivatives. The HDG methods have the computational advantage of eliminating all internal degrees of freedom and the only globally coupled unknowns are those at the element interfaces. Furthermore, the global stiffness matrix is tridiagonal, symmetric, and positive definite. Internal degrees of freedom are recovered at an element-by-element postprocessing step. We carry out a series of numerical experiments to ascertain the performance of the proposed method.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)20-27
Sayfa sayısı8
DergiJournal of Computational and Applied Mathematics
Hacim333
DOI'lar
Yayın durumuYayınlandı - 1 May 2018
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2017 Elsevier B.V.

Parmak izi

A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap