A fuzzy touch to R-MCL localization algorithm

Hatice Kose*, H. Levent Akm

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

3 Atıf (Scopus)

Özet

In this work, a novel method called Fuzzy Reverse Monte Carlo Localization (Fuzzy R-MCL) for global localization of autonomous mobile agents in the robotic soccer domain is proposed to overcome the uncertainty in the sensors, environment and the motion model. R-MCL is a hybrid method based on both Markov Localization(ML) and Monte Carlo Localization(MCL) where the ML module finds the region where the robot should be and MCL predicts the geometrical location with high precision by selecting samples in this region. In this work, a fuzzy approach is embedded in this method, to improve flexibility, accuracy and robustness. In addition to using Fuzzy membership functions in modeling the uncertainty of the grid cells and samples, different heuristics are used to enable the adaptation of the method to different levels of noise and sparsity. The method is very robust and fast and requires less computational power and memory compared to similar approaches and is accurate enough for high level decision making which is vital for robot soccer.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıRoboCup 2005
Ana bilgisayar yayını alt yazısıRobot Soccer World Cup IX
YayınlayanSpringer Verlag
Sayfalar420-427
Sayfa sayısı8
ISBN (Basılı)9783540354376
DOI'lar
Yayın durumuYayınlandı - 2006
Harici olarak yayınlandıEvet

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim4020 LNAI
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

Parmak izi

A fuzzy touch to R-MCL localization algorithm' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap