A fuzzy base classifier for fuzzy data included location segmentation

Sultan Ceren Oner*, Basar Oztaysi

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Location Segmentation has several strategic and tactical implications in marketing products and services. Despite hard clustering methods having several weaknesses, they remain widely applied in marketing studies. Alternative segmentation methods such as fuzzy methods are rarely adapted to understand consumer location visiting tendency. In this study, we propose a strategy of analysis, by combining Adaboost algorithm and the fuzzy decision tree methodology for fuzzy data. The results emphasis on the heterogeneity in consumers’ place preferences and implications for marketing are offered.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Techniques in Big Data Analytics and Decision Making - Proceedings of the INFUS 2019 Conference
EditörlerCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A.Cagri Tolga
YayınlayanSpringer Verlag
Sayfalar170-177
Sayfa sayısı8
ISBN (Basılı)9783030237554
DOI'lar
Yayın durumuYayınlandı - 2020
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2019 - Istanbul, Turkey
Süre: 23 Tem 201925 Tem 2019

Yayın serisi

AdıAdvances in Intelligent Systems and Computing
Hacim1029
ISSN (Basılı)2194-5357
ISSN (Elektronik)2194-5365

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2019
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot23/07/1925/07/19

Bibliyografik not

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

Parmak izi

A fuzzy base classifier for fuzzy data included location segmentation' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap