A framework for business failure prediction

Irem Islek*, Idris Murat Atakli, Sule Gunduz Oguducu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Business failure prediction systems help predict financial failures before they actually happen and provide an early warning for enterprises. Using machine learning techniques, instead of traditional statistical models, has brought a considerable increase in performance into the area of business failure prediction. This paper presents a frame-work for predicting business failures by using different machine learning techniques. We, also, implemented a novel model for business failure prediction based on NARX (nonlinear autoregressive network with exogenous inputs) feedback neural network to be included into this framework which is a recurrent dynamic network with feedback connections. Detailed experiments are conducted to compare the performance of these approaches. Especially, for the long-term business failure predictions, there are no other papers investigating the performance of NARX. To the best of our knowledge, this is the first time NARX algorithm is applied for long-term business failure prediction.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıArtificial Intelligence and Soft Computing - 16th International Conference, ICAISC 2017, Proceedings
EditörlerJacek M. Zurada, Lotfi A. Zadeh, Ryszard Tadeusiewicz, Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer
YayınlayanSpringer Verlag
Sayfalar74-83
Sayfa sayısı10
ISBN (Basılı)9783319590592
DOI'lar
Yayın durumuYayınlandı - 2017
Etkinlik16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017 - Zakopane, Poland
Süre: 11 Haz 201715 Haz 2017

Yayın serisi

AdıLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Hacim10246 LNAI
ISSN (Basılı)0302-9743
ISSN (Elektronik)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017
Ülke/BölgePoland
ŞehirZakopane
Periyot11/06/1715/06/17

Bibliyografik not

Publisher Copyright:
© Springer International Publishing AG 2017.

Finansman

This research was partially supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under TEYDEB grant 3150156.

FinansörlerFinansör numarası
TUBITAK3150156
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

    Parmak izi

    A framework for business failure prediction' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap