A Dynamically Selected GPT Model for Phishing Detection

Alp Baris Beydemir*, Ulas Sezgin, Umutcan Dogan, Burak Engin Asiklar, Fahri Anil Yerlikaya, Serif Bahtiyar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

This paper introduces a novel approach to augmenting Incident Response Teams (IRT) by leveraging fine-tuned GPT models for early threat detection. Traditional IRTs often face challenges in timely response, prompting the need for automation. Our solution focuses on automating the pre-detection phase by alerting users about potentially harmful emails before they are opened, addressing the issue of insufficient response time. In comparison to the base model, our fine-tuned GPT models exhibit superior performance. The results of this study will be forwarded to the IRT for further evaluation and potential integration into a pre-detection system. Notably, our method emphasizes content and context analysis of emails, crucial for identifying insider threats. By employing Generative Large Language Models (GLLM), specifically tuned for this purpose, we aim to enhance the detection capabilities, contributing to a more robust incident response strategy in cybersecurity.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2024 14th International Conference on Advanced Computer Information Technologies, ACIT 2024 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers
Sayfalar481-484
Sayfa sayısı4
ISBN (Elektronik)9798350350036
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik14th International Conference on Advanced Computer Information Technologies, ACIT 2024 - Ceske Budejovice, Czech Republic
Süre: 19 Eyl 202421 Eyl 2024

Yayın serisi

AdıProceedings - International Conference on Advanced Computer Information Technologies, ACIT
ISSN (Basılı)2770-5218
ISSN (Elektronik)2770-5226

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???14th International Conference on Advanced Computer Information Technologies, ACIT 2024
Ülke/BölgeCzech Republic
ŞehirCeske Budejovice
Periyot19/09/2421/09/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

A Dynamically Selected GPT Model for Phishing Detection' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap