A denial of service detector based on maximum likelihood detection and the random neural network

Gülay Öke*, Georgios Loukas

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

43 Atıf (Scopus)

Özet

Due to the simplicity of the concept and the availability of attack tools, launching a DoS attack is relatively easy, while defending a network resource against it is disproportionately difficult. The first step of a protection scheme against DoS must be the detection of its existence, ideally before the destructive traffic build-up. In this paper we propose a DoS detection approach which uses the maximum likelihood criterion with the random neural network (RNN). Our method is based on measuring various instantaneous and statistical variables describing the incoming network traffic, acquiring a likelihood estimation and fusing the information gathered from the individual input features using likelihood averaging and different architectures of RNNs. We present and compare seven variations of it and evaluate our experimental results obtained in a large networking testbed.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)717-727
Sayfa sayısı11
DergiComputer Journal
Hacim50
Basın numarası6
DOI'lar
Yayın durumuYayınlandı - Kas 2007
Harici olarak yayınlandıEvet

Parmak izi

A denial of service detector based on maximum likelihood detection and the random neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap