A Deep Learning Model for Road Damage Detection After an Earthquake Based on Synthetic Aperture Radar (SAR) and Field Datasets

Sadra Karimzadeh*, Mohammad Ghasemi, Masashi Matsuoka, Koichi Yagi, Abdullah Can Zulfikar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

13 Atıf (Scopus)

Özet

This article is a new assessment of damaged roads after the Kumamoto earthquake in southern Japan (2016) using remotely sensed synthetic aperture radar (SAR) data, field data and deep learning. Three SAR images from descending orbits of Sentinel-1 in vertical-vertical polarizations are considered for radiometric calibration, geocoding and interferometric analyses. Field data in terms of the international roughness index (IRI) were gathered over more than 530 km using a smartphone accelerometer and the BumpRecorder application. The relationship between SAR data and IRI data was investigated in a binary (0 and 1) mode to establish a multilayer perceptron model of damaged and intact roads. We found the remote sensing SAR datasets suitable, not only for the detection of damaged roads, but also as an indicator of road roughness changes. The classification results for damaged and intact roads indicated that our datasets (SAR and field measurements), together with a deep learning model, yielded acceptable overall accuracy (87.1%).

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)5753-5765
Sayfa sayısı13
DergiIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Hacim15
DOI'lar
Yayın durumuYayınlandı - 2022
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2008-2012 IEEE.

Finansman

This work was supported by the Japanese Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) under Grant 20H02411.

FinansörlerFinansör numarası
Japan Society for the Promotion of Science20H02411

    Parmak izi

    A Deep Learning Model for Road Damage Detection After an Earthquake Based on Synthetic Aperture Radar (SAR) and Field Datasets' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap