A Deep Learning Approach for Short-Term Soil Moisture Retrieval Using CYGNSS

Muhammed Rasit Cevikalp*, Mustafa Serkan Isik, Mehmet Furkan Celik, Nebiye Musaoglu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

In this study, short-term soil moisture values were estimated in the CONUS region using Cyclone Global Navigation Satellite System (CYGNSS) observations between August 2018 and October 2022 along with ancillary data including precipitation, temperature, normalized difference vegetation index (NDVI), land cover classification (LCC), elevation, and soil type. The study employs Long Short-Term Memory (LSTM) neural networks to demonstrate the effectiveness of this method in accurately estimating daily soil moisture at International Soil Moisture Network (ISMN) stations. Furthermore, the study analyzes SHapley Additive exPlanations (SHAP) values to understand how each feature contributes to the model's predictions.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar4472-4476
Sayfa sayısı5
ISBN (Elektronik)9798350360325
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece
Süre: 7 Tem 202412 Tem 2024

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
Ülke/BölgeGreece
ŞehirAthens
Periyot7/07/2412/07/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

A Deep Learning Approach for Short-Term Soil Moisture Retrieval Using CYGNSS' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap