Özet
In this study, short-term soil moisture values were estimated in the CONUS region using Cyclone Global Navigation Satellite System (CYGNSS) observations between August 2018 and October 2022 along with ancillary data including precipitation, temperature, normalized difference vegetation index (NDVI), land cover classification (LCC), elevation, and soil type. The study employs Long Short-Term Memory (LSTM) neural networks to demonstrate the effectiveness of this method in accurately estimating daily soil moisture at International Soil Moisture Network (ISMN) stations. Furthermore, the study analyzes SHapley Additive exPlanations (SHAP) values to understand how each feature contributes to the model's predictions.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 4472-4476 |
Sayfa sayısı | 5 |
ISBN (Elektronik) | 9798350360325 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2024 |
Etkinlik | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, Greece Süre: 7 Tem 2024 → 12 Tem 2024 |
Yayın serisi
Adı | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 |
---|---|
Ülke/Bölge | Greece |
Şehir | Athens |
Periyot | 7/07/24 → 12/07/24 |
Bibliyografik not
Publisher Copyright:© 2024 IEEE.