TY - JOUR
T1 - A Data-Driven Approach for Generator Load Prediction in Shipboard Microgrid
T2 - The Chemical Tanker Case Study
AU - Uyanık, Tayfun
AU - Bakar, Nur Najihah Abu
AU - Kalenderli, Özcan
AU - Arslanoğlu, Yasin
AU - Guerrero, Josep M.
AU - Lashab, Abderezak
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - Energy efficiency and operational safety practices on ships have gained more importance due to the rules set by the International Maritime Organization in recent years. While approximately 70% of the fuel consumed on a commercial ship is utilized for the propulsion load, a significant portion of the remaining fuel is consumed by the auxiliary generators responsible for the ship’s onboard load. It is crucial to comprehend the impact of the electrical load on the ship’s generators, as it significantly assists maritime operators in strategic energy planning to minimize the chance of unexpected electrical breakdowns during operation. However, an appropriate handling mechanism is required when there are massive datasets and varied input data involved. Thus, this study implements data-driven approaches to estimate the load of a chemical tanker ship’s generator using a 1000-day real dataset. Two case studies were performed, namely, single load prediction for each generator and total load prediction for all generators. The prediction results show that for the single generator load prediction of DG1, DG2, and DG3, the decision tree model encountered the least errors for MAE (0.2364, 0.1306, and 0.1532), RMSE (0.2455, 0.2069, and 0.2182), and MAPE (17.493, 5.1139, and 7.7481). In contrast, the deep neural network outperforms all other prediction models in the case of total generation prediction, with values of 1.0866, 2.6049, and 14.728 for MAE, RMSE, and MAPE, respectively.
AB - Energy efficiency and operational safety practices on ships have gained more importance due to the rules set by the International Maritime Organization in recent years. While approximately 70% of the fuel consumed on a commercial ship is utilized for the propulsion load, a significant portion of the remaining fuel is consumed by the auxiliary generators responsible for the ship’s onboard load. It is crucial to comprehend the impact of the electrical load on the ship’s generators, as it significantly assists maritime operators in strategic energy planning to minimize the chance of unexpected electrical breakdowns during operation. However, an appropriate handling mechanism is required when there are massive datasets and varied input data involved. Thus, this study implements data-driven approaches to estimate the load of a chemical tanker ship’s generator using a 1000-day real dataset. Two case studies were performed, namely, single load prediction for each generator and total load prediction for all generators. The prediction results show that for the single generator load prediction of DG1, DG2, and DG3, the decision tree model encountered the least errors for MAE (0.2364, 0.1306, and 0.1532), RMSE (0.2455, 0.2069, and 0.2182), and MAPE (17.493, 5.1139, and 7.7481). In contrast, the deep neural network outperforms all other prediction models in the case of total generation prediction, with values of 1.0866, 2.6049, and 14.728 for MAE, RMSE, and MAPE, respectively.
KW - data-driven
KW - generator load prediction
KW - maritime
KW - shipboard microgrid
UR - http://www.scopus.com/inward/record.url?scp=85164829848&partnerID=8YFLogxK
U2 - 10.3390/en16135092
DO - 10.3390/en16135092
M3 - Article
AN - SCOPUS:85164829848
SN - 1996-1073
VL - 16
JO - Energies
JF - Energies
IS - 13
M1 - 5092
ER -