A comprehensive literature review on nature-inspired soft computing and algorithms: Tabular and graphical analyses

Bilal Ervural*, Beyzanur Cayir Ervural, Cengiz Kahraman

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümBölümbilirkişi

6 Atıf (Scopus)

Özet

Soft Computing techniques are capable of identifying uncertainty in data, determining imprecision of knowledge, and analyzing ill-defined complex problems. The nature of real world problems is generally complex and their common characteristic is uncertainty owing to the multidimensional structure. Analytical models are insufficient in managing all complexity to satisfy the decision makers' expectations. Under this viewpoint, soft computing provides significant flexibility and solution advantages. In this chapter, firstly, the major soft computing methods are classified and summarized. Then a comprehensive review of eight nature inspired - soft computing algorithms which are genetic algorithm, particle swarm algorithm, ant colony algorithms, artificial bee colony, firefly optimization, bat algorithm, cuckoo algorithm, and grey wolf optimizer algorithm are presented and analyzed under some determined subject headings (classification topics) in a detailed way. The survey findings are supported with charts, bar graphs and tables to be more understandable.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıHandbook of Research on Soft Computing and Nature-Inspired Algorithms
YayınlayanIGI Global
Sayfalar34-68
Sayfa sayısı35
ISBN (Elektronik)9781522521297
ISBN (Basılı)1522521283, 9781522521280
DOI'lar
Yayın durumuYayınlandı - 10 Mar 2017

Bibliyografik not

Publisher Copyright:
© 2017, IGI Global. All rights reserved.

Parmak izi

A comprehensive literature review on nature-inspired soft computing and algorithms: Tabular and graphical analyses' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap