A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition

Mostafa Mehdipour Ghazi, Hazim Kemal Ekenel

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

118 Atıf (Scopus)

Özet

Deep learning based approaches have been dominating the face recognition field due to the significant performance improvement they have provided on the challenging wild datasets. These approaches have been extensively tested on such unconstrained datasets, on the Labeled Faces in the Wild and YouTube Faces, to name a few. However, their capability to handle individual appearance variations caused by factors such as head pose, illumination, occlusion, and misalignment has not been thoroughly assessed till now. In this paper, we present a comprehensive study to evaluate the performance of deep learning based face representation under several conditions including the varying head pose angles, upper and lower face occlusion, changing illumination of different strengths, and misalignment due to erroneous facial feature localization. Two successful and publicly available deep learning models, namely VGG-Face and Lightened CNN have been utilized to extract face representations. The obtained results show that although deep learning provides a powerful representation for face recognition, it can still benefit from preprocessing, for example, for pose and illumination normalization in order to achieve better performance under various conditions. Particularly, if these variations are not included in the dataset used to train the deep learning model, the role of preprocessing becomes more crucial. Experimental results also show that deep learning based representation is robust to misalignment and can tolerate facial feature localization errors up to 10% of the interocular distance.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
YayınlayanIEEE Computer Society
Sayfalar102-109
Sayfa sayısı8
ISBN (Elektronik)9781467388504
DOI'lar
Yayın durumuYayınlandı - 16 Ara 2016
Etkinlik29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 - Las Vegas, United States
Süre: 26 Haz 20161 Tem 2016

Yayın serisi

AdıIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Basılı)2160-7508
ISSN (Elektronik)2160-7516

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
Ülke/BölgeUnited States
ŞehirLas Vegas
Periyot26/06/161/07/16

Bibliyografik not

Publisher Copyright:
© 2016 IEEE.

Parmak izi

A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap