A comparison of differential evolution and Harmony Search methods for SVM model selection in hyperspectral image classification

Oguzhan Ceylan, Gulsen Taskin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

3 Atıf (Scopus)

Özet

Support vector machines is a very popular method in classification of hyperspectral images due to their good generalization capability even with a limited number of training datasets. However, the performance of SVM strongly depends on selection of kernel parameters when RBF kernel is used. In order to achieve a high classification performance, the kernel parameters, that are the value of regularization term and kernel width, should optimally be chosen. In this work, the use of recently developed evolutionary optimization methods, harmony search and differential evolution methods, are investigated in the context of hyperspectral image classification for the first time in this paper. The experimental results showed that these methods provide fast and accurate results in comparison to classical grid search approach.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar485-488
Sayfa sayısı4
ISBN (Elektronik)9781509033324
DOI'lar
Yayın durumuYayınlandı - 1 Kas 2016
Etkinlik36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, China
Süre: 10 Tem 201615 Tem 2016

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)
Hacim2016-November

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
Ülke/BölgeChina
ŞehirBeijing
Periyot10/07/1615/07/16

Bibliyografik not

Publisher Copyright:
© 2016 IEEE.

Parmak izi

A comparison of differential evolution and Harmony Search methods for SVM model selection in hyperspectral image classification' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap