A classification of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension

Nurettin Cenk Turgay*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

4 Atıf (Scopus)

Özet

In this paper we study hypersurfaces with the mean curvature function H satisfying 〈∇H; ∇H〉 = 0 in a Minkowski space of arbitrary dimension. First, we obtain some conditions satisfied by connection forms of biconservative hypersurfaces with the mean curvature function whose gradient is light-like. Then, we use these results to get a classification of biharmonic hypersurfaces. In particular, we prove that if a hypersurface is biharmonic, then it must have at least 6 distinct principal curvatures under the hypothesis of having mean curvature function satisfying the condition above.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1125-1134
Sayfa sayısı10
DergiHacettepe Journal of Mathematics and Statistics
Hacim45
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - 2016

Bibliyografik not

Publisher Copyright:
© 2016, Hacettepe University. All rights reserved.

Parmak izi

A classification of biharmonic hypersurfaces in the Minkowski spaces of arbitrary dimension' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap