A biologically inspired denial of service detector using the random neural network

Georgios Loukas*, Gülay Öke

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

6 Atıf (Scopus)

Özet

Several of todays' computing challenges have been met by resorting to and adapting optimal solutions that have evolved in nature. For example, autonomic communication networks have started applying biologically-inspired methods to achieve some of their self-* properties. We build upon such methods to solve the recent problem of detection of Denial of Service networking attacks, by proposing a combination of Bayesian decision making and the Random Neural Networks (RNN) which are inspired by the random spiking behaviour of the biological neurons. Our approach is based on measuring various instantaneous and statistical variables describing the incoming network traffic, acquiring a likelihood estimation and fusing the information gathered from the individual input features using different architectures of the RNN. The experiments are conducted using the CPN networking protocol which is also based on the RNN.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, MASS
DOI'lar
Yayın durumuYayınlandı - 2007
Harici olarak yayınlandıEvet
Etkinlik2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, MASS - Pisa, Italy
Süre: 8 Eki 200711 Eki 2007

Yayın serisi

Adı2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, MASS

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, MASS
Ülke/BölgeItaly
ŞehirPisa
Periyot8/10/0711/10/07

Parmak izi

A biologically inspired denial of service detector using the random neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap