A Bayesian robust chi-squared test for testing simple hypotheses

Osman Doğan, Süleyman Taşpınar*, Anil K. Bera

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

10 Atıf (Scopus)

Özet

In this paper, we introduce a new Bayesian chi-squared test based on an adjusted quadratic loss function for testing a simple null hypothesis. We show that the asymptotic null distribution of our suggested test is a central chi-squared distribution under some assumptions required for the Bayesian large sample theory. We refer to our test as the Bayesian robust chi-squared test, since it is robust to parametric misspecification in the alternative model. That is, the limiting null distribution of our test is a central chi-squared distribution irrespective of parametric misspecification in the alternative model. In addition to being robust to parametric misspecification, our test also shares properties of the test suggested by Li et al. (2015) based on a quadratic loss function. We provide four examples to illustrate the implementation of our suggested Bayesian test statistic.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)933-958
Sayfa sayısı26
DergiJournal of Econometrics
Hacim222
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - Haz 2021
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2020 Elsevier B.V.

Parmak izi

A Bayesian robust chi-squared test for testing simple hypotheses' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap