2-D data extrapolation for high resolution radar imaging using autoregressive lattice modelling

I. Erer*, M. Kartal, A. H. Kayran

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

8 Atıf (Scopus)

Özet

A new method to estimate backscattered fields beyond the measurement range is described. The available data is extrapolated by 2-D linear prediction of 2-D cartesian frequency spectra using 2-D orthogonal lattice predictors. Since this technique does not guarantee a stable prediction filter, one may have to modify the prediction parameters to ensure stability. These modified parameters can be used for the 2-D extrapolation of the 2-D cartesian backscattered data. It is shown that the inverse Fourier transform of the extended data achieves better resolved images both in range and cross-range for simulated and experimental targets. The algorithm is based on 2-D extrapolation of the backscattered data, while other existing algorithms extrapolate range or cross-range profiles separately owing to the separability assumption of the input data. The method provides more reliable results for both experimental and real-world targets which cannot be described by the point target model. Moreover, the complexity related with the calculation of prediction coefficients is independent of the extrapolation factor.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)277-283
Sayfa sayısı7
DergiIEE Proceedings: Radar, Sonar and Navigation
Hacim148
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - Eki 2001

Parmak izi

2-D data extrapolation for high resolution radar imaging using autoregressive lattice modelling' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap