Özet
ISAR imaging based on autoregressive (AR) model has not only spurious scattering centers but also high side lobes. Sparse AR models can be utilized for suppressing these. However, computational complexity of the BPDN with penalty sparsity approach which is employed to compute sparse AR model coefficients is high. In this work, the sparse AR model coefficients are computed by using BPDN and LASSO approaches which have less computational complexity. Spurious scattering centers and side lobes are successfully suppressed in the resulting radar images.
Tercüme edilen katkı başlığı | 2-D sparse autoregressive modeling for high resolution radar imaging |
---|---|
Orijinal dil | Türkçe |
Ana bilgisayar yayını başlığı | 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 857-860 |
Sayfa sayısı | 4 |
ISBN (Elektronik) | 9781509016792 |
DOI'lar | |
Yayın durumu | Yayınlandı - 20 Haz 2016 |
Etkinlik | 24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey Süre: 16 May 2016 → 19 May 2016 |
Yayın serisi
Adı | 2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings |
---|
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 24th Signal Processing and Communication Application Conference, SIU 2016 |
---|---|
Ülke/Bölge | Turkey |
Şehir | Zonguldak |
Periyot | 16/05/16 → 19/05/16 |
Bibliyografik not
Publisher Copyright:© 2016 IEEE.
Keywords
- AR model
- BPDN
- BPDN with penalty
- LASSO
- radar imaging
- sparsity