2-B Seyrek Özbaǧlanimli Modelleme ile Yüksek Çözünürlüklü Radar Görüntüleme

Bahar Özen, Işin Erer

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

ISAR imaging based on autoregressive (AR) model has not only spurious scattering centers but also high side lobes. Sparse AR models can be utilized for suppressing these. However, computational complexity of the BPDN with penalty sparsity approach which is employed to compute sparse AR model coefficients is high. In this work, the sparse AR model coefficients are computed by using BPDN and LASSO approaches which have less computational complexity. Spurious scattering centers and side lobes are successfully suppressed in the resulting radar images.

Tercüme edilen katkı başlığı2-D sparse autoregressive modeling for high resolution radar imaging
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar857-860
Sayfa sayısı4
ISBN (Elektronik)9781509016792
DOI'lar
Yayın durumuYayınlandı - 20 Haz 2016
Etkinlik24th Signal Processing and Communication Application Conference, SIU 2016 - Zonguldak, Turkey
Süre: 16 May 201619 May 2016

Yayın serisi

Adı2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???24th Signal Processing and Communication Application Conference, SIU 2016
Ülke/BölgeTurkey
ŞehirZonguldak
Periyot16/05/1619/05/16

Bibliyografik not

Publisher Copyright:
© 2016 IEEE.

Keywords

  • AR model
  • BPDN
  • BPDN with penalty
  • LASSO
  • radar imaging
  • sparsity

Parmak izi

2-B Seyrek Özbaǧlanimli Modelleme ile Yüksek Çözünürlüklü Radar Görüntüleme' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap