Çoklu-seviyeli vektör tüneli aracilili ile hiperspektral görüntülerin siniflandirilmasi

Suleyman Demirci, Icin Erer, Okan Ersoy

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

Özet

The spectral matching, statistical and kernel based methods are the most widely known classification algorithms for hyperspectral imaging. Spectral matching algorithms try to identify the similarity of the unknown spectral signature of test pixels with the expected signature. In this study, an efficient spectral similarity method employing Multi-Scale Vector Tunnel Algorithm (MS-VTA) for supervised classification of the materials in hyperspectral imagery is introduced. With the proposed algorithm, a simple spectral similarity based decision rule using some reference data or spectral signature is formed and compared with the Euclidian Distance (ED) and the Spectral Angle Map (SAM) classifiers. The prediction of multi-level upper and lower spectral boundaries of spectral signatures for all classes across spectral bands constitutes the basic principle of the proposed algorithm.

Tercüme edilen katkı başlığıHyperspectral image classification by Multi-Scale Vector Tunnel
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings
YayınlayanIEEE Computer Society
Sayfalar1162-1167
Sayfa sayısı6
ISBN (Basılı)9781479948741
DOI'lar
Yayın durumuYayınlandı - 2014
Etkinlik2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Trabzon, Turkey
Süre: 23 Nis 201425 Nis 2014

Yayın serisi

Adı2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2014 22nd Signal Processing and Communications Applications Conference, SIU 2014
Ülke/BölgeTurkey
ŞehirTrabzon
Periyot23/04/1425/04/14

Keywords

  • Classification
  • Hyperspectral Imaging
  • Image Processing

Parmak izi

Çoklu-seviyeli vektör tüneli aracilili ile hiperspektral görüntülerin siniflandirilmasi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap