YOLOv3 as a Deep Face Detector

Filiz Gurkan, Bunyamin Sagman, Bilge Gunsel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Face detection is a crucial step for several applications including surveillance, human-machine interaction, and IoT. Robustness to occlusion, pose, scale, and illumination changes are the key issues in all of these systems. After the success of CNNs in object detection, face detection has been dominated by the CNN-based methods. This paper proposes a face detector designed based on a recently introduced real time deep object detector, YOLOv3. In particular YOLOv3 network is trained as a face detector and a new model file is generated. Performance evaluation reported on WIDER data base demonstrate that the developed face detector, YOLOv3-face, improves robustness to occlusion and pose changes and it is capable of detecting faces greater than 15 pixels. Performance of YOLOv3-face compared to top 14 state-of-the-art trackers is reported in terms of precision-recall curves. It is concluded that the precision rates achieved by YOLOv3-face are very close to the top 8 trackers at tolerable false detection rates. Moreover, the computational load of YOLOv3-face detector significantly reduces with the used single pass joint optimization scheme.

Original languageEnglish
Title of host publicationELECO 2019 - 11th International Conference on Electrical and Electronics Engineering
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages605-609
Number of pages5
ISBN (Electronic)9786050112757
DOIs
Publication statusPublished - Nov 2019
Event11th International Conference on Electrical and Electronics Engineering, ELECO 2019 - Bursa, Turkey
Duration: 28 Nov 201930 Nov 2019

Publication series

NameELECO 2019 - 11th International Conference on Electrical and Electronics Engineering

Conference

Conference11th International Conference on Electrical and Electronics Engineering, ELECO 2019
Country/TerritoryTurkey
CityBursa
Period28/11/1930/11/19

Bibliographical note

Publisher Copyright:
© 2019 Chamber of Turkish Electrical Engineers.

Fingerprint

Dive into the research topics of 'YOLOv3 as a Deep Face Detector'. Together they form a unique fingerprint.

Cite this