Abstract
In our work, 3D objects classification has been dealt with convolutional neural networks which is a common paradigm recently in image recognition. In the first phase of experiments, 3D models in ModelNet10 and ModelNet40 data sets were voxelized and scaled with certain parameters. Classical CNN and 3D Dense CNN architectures were designed for training the pre-processed data. In addition, the two trained CNNs were ensembled and the results of them were observed. A success rate of 95.37% achieved on ModelNet10 by using 3D dense CNN, a success rate of 91.24% achieved with ensemble of two CNNs on ModelNet40.
Translated title of the contribution | A convolutional neural networks oriented approach for voxel-based 3D object classification |
---|---|
Original language | Turkish |
Title of host publication | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1-4 |
Number of pages | 4 |
ISBN (Electronic) | 9781538615010 |
DOIs | |
Publication status | Published - 5 Jul 2018 |
Event | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 - Izmir, Turkey Duration: 2 May 2018 → 5 May 2018 |
Publication series
Name | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 |
---|
Conference
Conference | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 |
---|---|
Country/Territory | Turkey |
City | Izmir |
Period | 2/05/18 → 5/05/18 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.