Vision-Based Autonomous UGV Detection, Tracking, and Following for a UAV

Fatma Gul Amil, Muhammet Sen, Huseyin Burak Kurt, Semih Beycimen, Murat Millidere

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This study proposes a methodology for unmanned ground vehicle (UGV) navigation in off-road environments where GPS signals are not available. The Husky-A200 at Cranfield University, United Kingdom has been used as a UGV in this research project. Due to the limited field of vision of UGVs, a UAV-UGV collaboration approach was adopted. The methodology involves five steps. The first step is divided into three phases: The aerial images of UGV from UAV are generated in the first phase. In the second phase, the UGV is detected and tracked using computer vision techniques. In the third phase, the relative pose (position and heading) between the UAV and UGV is estimated continuously using visual data. In the second step, the UAV maintain a fixed location (position and heading) relative to the UGV. The third step involves capturing aerial images from the UAV‘s mounted camera and transmitting it to the ground station instantly to create a global traversability map that classifies terrain features based on their traversability. In the fourth step, additional sensors such as LiDAR, radar, and IMU are used to refine the global traversability map. In the final step, the UGV navigates automatically using the refined traversability map. This study will focus on the first two steps of the methodology, while subsequent studies will address the remaining steps.

Original languageEnglish
Title of host publicationAIAA SciTech Forum and Exposition, 2024
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624107115
DOIs
Publication statusPublished - 2024
Externally publishedYes
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: 8 Jan 202412 Jan 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period8/01/2412/01/24

Bibliographical note

Publisher Copyright:
© 2024 by the American Institute of Aeronautics and Astronautics, Inc.

Fingerprint

Dive into the research topics of 'Vision-Based Autonomous UGV Detection, Tracking, and Following for a UAV'. Together they form a unique fingerprint.

Cite this