TY - JOUR
T1 - Usability of the GPS precise point positioning technique in marine applications
AU - Alkan, R. M.
AU - Öcalan, T.
PY - 2013/7
Y1 - 2013/7
N2 - This study investigates the accuracy of an online Precise Point Positioning (PPP) service operated by the Geodetic Survey Division of Natural Resources Canada (NRCan), Canadian Spatial Reference System (CSRS)-PPP, by using single/dual-frequency Global Positioning System (GPS) data collected by dual-frequency geodetic-grade and Original Equipment Manufacturer (OEM) board type single-frequency GPS receivers. In this work, a kinematic test was carried out in Halic Bay (Golden Horn), Istanbul, Turkey, to assess the performance of the PPP method in a dynamic environment. Based on this study, it can be concluded that the coordinates estimated from the online CSRS-PPP service have a potential of about metre-level accuracy by processing single frequency data collected by an OEM receiver and about a decimetre to a few centimetres level accuracy by processing dual frequency data collected by a geodetic-grade receiver. In general, results show that the PPP technique has become a significant alternative to the conventional relative (differential) positioning techniques (i.e., Differential GPS (DGPS), Real-time Kinematic (RTK)). The technique does not suffer from the drawbacks of the DGPS technique and has potential to provide the same position accuracy without the requirement for a reference station. Consequently, it has been concluded that the PPP technique may be effectively used in marine applications due to its ease of use and provision of high accuracy, as well as being able to offer reduced field operational costs.
AB - This study investigates the accuracy of an online Precise Point Positioning (PPP) service operated by the Geodetic Survey Division of Natural Resources Canada (NRCan), Canadian Spatial Reference System (CSRS)-PPP, by using single/dual-frequency Global Positioning System (GPS) data collected by dual-frequency geodetic-grade and Original Equipment Manufacturer (OEM) board type single-frequency GPS receivers. In this work, a kinematic test was carried out in Halic Bay (Golden Horn), Istanbul, Turkey, to assess the performance of the PPP method in a dynamic environment. Based on this study, it can be concluded that the coordinates estimated from the online CSRS-PPP service have a potential of about metre-level accuracy by processing single frequency data collected by an OEM receiver and about a decimetre to a few centimetres level accuracy by processing dual frequency data collected by a geodetic-grade receiver. In general, results show that the PPP technique has become a significant alternative to the conventional relative (differential) positioning techniques (i.e., Differential GPS (DGPS), Real-time Kinematic (RTK)). The technique does not suffer from the drawbacks of the DGPS technique and has potential to provide the same position accuracy without the requirement for a reference station. Consequently, it has been concluded that the PPP technique may be effectively used in marine applications due to its ease of use and provision of high accuracy, as well as being able to offer reduced field operational costs.
KW - Marine applications
KW - OEM GPS receiver
KW - PPP
KW - Web-based service
UR - http://www.scopus.com/inward/record.url?scp=84878537813&partnerID=8YFLogxK
U2 - 10.1017/S0373463313000210
DO - 10.1017/S0373463313000210
M3 - Article
AN - SCOPUS:84878537813
SN - 0373-4633
VL - 66
SP - 579
EP - 588
JO - Journal of Navigation
JF - Journal of Navigation
IS - 4
ER -