Unsupervised Visual Ego-motion Learning for Robots

Fidan Khalilbayli, Baris Bayram, Gokhan Ince

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Despite changing conditions and mobile objects in its environment, the goal of an autonomous robot is to navigate without any human operator. For achieving this, the knowledge of both the dynamic state of the robot and the 3D structure of the environment must be known. While discretizing a continuous image sequence, three types of motion can be observed: 1) a mobile camera (or a robot as in this study) capturing a static scene, 2) independent moving objects in front of a static camera, or 3) simultaneously moving camera and independent objects in the environment at any given time. One of the challenges is the existence of one or multiple mobile objects in the environment which have independent velocity and direction with respect to the environment. In this work, a visual ego-motion estimation with unsupervised learning for robots by using stereo video taken by a camera mounted on them is introduced. Also, audio perception is utilized to support visual ego-motion estimation by sensor fusion in order to identifying the source of the motion. We have verified the effectiveness of our approach by conducting three different experiments in which both robot and object, sole robot and sole object motion were present.

Original languageEnglish
Title of host publicationUBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages676-681
Number of pages6
ISBN (Electronic)9781728139647
DOIs
Publication statusPublished - Sept 2019
Event4th International Conference on Computer Science and Engineering, UBMK 2019 - Samsun, Turkey
Duration: 11 Sept 201915 Sept 2019

Publication series

NameUBMK 2019 - Proceedings, 4th International Conference on Computer Science and Engineering

Conference

Conference4th International Conference on Computer Science and Engineering, UBMK 2019
Country/TerritoryTurkey
CitySamsun
Period11/09/1915/09/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Image Processing
  • Robotics
  • Sensor Fusion
  • Unsupervised Learning
  • Visual Ego-motion Estimation

Fingerprint

Dive into the research topics of 'Unsupervised Visual Ego-motion Learning for Robots'. Together they form a unique fingerprint.

Cite this