Unmanned Aerial Vehicle Positioning using 5G New Radio Technology in Urban Environment

Morad Mousa*, Saba Al-Rubaye, Gokhan Inalhan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Citations (Scopus)

Abstract

Unmanned aerial vehicles (UAVs) are becoming increasingly popular for various applications, including surveillance, monitoring, mapping, delivery, and inspection. However, their positioning capabilities in urban environments can be limited due to challenges such as Non-Line-of-Sight (NLOS) propagation, multi-path interference, and signal blockage caused by tall buildings, trees, and other obstacles, which can affect their positioning capabilities. The purpose of this paper is to provide a novel approach for UAV's positioning based on Observed Time Difference of Arrival (OTDOA), combining 5G (NR) technology and an inertial measurement unit (IMU) to improve UAV positioning in urban environments. Integrating these technologies can improve UAV positioning and control systems by offering rapid, low-latency communication, a thorough and precise comprehension of the UAV's surroundings and its own condition, and more accurate assessments of the UAV's location, speed, and orientation. Simulation model shows the data from these sensors is then fused using an Extended Kalman Filter (EKF) to estimate the UAV's position and orientation. The study shows that the proposed system delivers accurate and reliable UAV positioning in these environments, outperforming traditional methods.

Original languageEnglish
Title of host publicationDASC 2023 - Digital Avionics Systems Conference, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350333572
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023 - Barcelona, Spain
Duration: 1 Oct 20235 Oct 2023

Publication series

NameAIAA/IEEE Digital Avionics Systems Conference - Proceedings
ISSN (Print)2155-7195
ISSN (Electronic)2155-7209

Conference

Conference42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023
Country/TerritorySpain
CityBarcelona
Period1/10/235/10/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Keywords

  • 5G networks
  • IMU
  • UAV
  • and Extended Kalman Filter (EKF)
  • barometric pressure sensors
  • positioning

Fingerprint

Dive into the research topics of 'Unmanned Aerial Vehicle Positioning using 5G New Radio Technology in Urban Environment'. Together they form a unique fingerprint.

Cite this