TY - JOUR
T1 - Ultrasound‐assisted synthesis of FeTiO3/GO nanocomposite for photocatalytic degradation of phenol under visible light irradiation
AU - Moradi, Masoud
AU - Vasseghian, Yasser
AU - Khataee, Alireza
AU - Harati, Motahareh
AU - Arfaeinia, Hossein
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/4/15
Y1 - 2021/4/15
N2 - Phenolic compounds are dangerous pollutants in industrial effluents that have caused many human and environmental problems. These compounds are resistant to decomposition conventional biological systems. Photocatalytic treatment is amongst the most efficient technique for phenol removal from aqueous media. In this study, FeTiO3/GO nanocomposite was synthesized through the ultrasound‐assisted method. Structural, morphological, and optical properties of the synthesized nanocomposite were characterized by TEM, XRD, EDS, XPS, BET, TGA, FTIR, and UV–visible techniques. Optimum conditions for phenol photocatalytic degradation were obtained in 3% of GO content, 0.75 g/L nanocomposite dosage, and pH = 8. The degradation efficiency decreased by increasing phenol concentrations and complete mineralization was observed after 240 min of irradiation in optimum conditions. The effect of scavengers indicated that superoxide and hydroxyl radicals had the main role in the photodegradation process. The hindrance effect of inorganic ions was obtained asHCO3- > Cl- > SO42− > NO3-. Our experimental results put forward the FeTiO3/GO nanocomposite as a highly stable catalyst that can successfully remove phenolic compounds from aqueous solutions. Only a 10.8% decrease was observed in phenol degradation efficiency after five cycles, showing high recyclability of the FeTiO3/GO nanocomposite.
AB - Phenolic compounds are dangerous pollutants in industrial effluents that have caused many human and environmental problems. These compounds are resistant to decomposition conventional biological systems. Photocatalytic treatment is amongst the most efficient technique for phenol removal from aqueous media. In this study, FeTiO3/GO nanocomposite was synthesized through the ultrasound‐assisted method. Structural, morphological, and optical properties of the synthesized nanocomposite were characterized by TEM, XRD, EDS, XPS, BET, TGA, FTIR, and UV–visible techniques. Optimum conditions for phenol photocatalytic degradation were obtained in 3% of GO content, 0.75 g/L nanocomposite dosage, and pH = 8. The degradation efficiency decreased by increasing phenol concentrations and complete mineralization was observed after 240 min of irradiation in optimum conditions. The effect of scavengers indicated that superoxide and hydroxyl radicals had the main role in the photodegradation process. The hindrance effect of inorganic ions was obtained asHCO3- > Cl- > SO42− > NO3-. Our experimental results put forward the FeTiO3/GO nanocomposite as a highly stable catalyst that can successfully remove phenolic compounds from aqueous solutions. Only a 10.8% decrease was observed in phenol degradation efficiency after five cycles, showing high recyclability of the FeTiO3/GO nanocomposite.
KW - FeTiO/GO
KW - Nanocomposite
KW - Phenol
KW - Photocatalytic degradation
UR - http://www.scopus.com/inward/record.url?scp=85098701840&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2020.118274
DO - 10.1016/j.seppur.2020.118274
M3 - Article
AN - SCOPUS:85098701840
SN - 1383-5866
VL - 261
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 118274
ER -