Abstract
A clear consequence of the increasing application of nanotechnology is its adverse effect on the environment. Semiconductor nanoparticles are among engineered nanomaterials that have been considered recently for their specific characteristics. In the present work, zinc selenide nanoparticles (ZnSe NPs) were synthesized and characterized by XRD, TEM, DLS and SEM. Biological aspects related to the impact of nanoparticles and Zn2+ ions were analyzed on the aquatic higher plant Lemna minor. The localization of ZnSe NPs in the root cells of L. minor was determined by TEM and fluorescence microscopy. Then, the entrance of ZnSe NPs into the plant cells was evaluated by a range of biological tests. The outcomes revealed that both the NPs and the ionic forms noticeably poisoned L. minor. In one hand, growth parameters and physiological indices such as photosynthetic pigments content were decreased. On the other hand, the activities of some antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)), as well as the contents of nonenzymatic antioxidants (phenols and flavonoids) were elevated. Taken together, high concentration of ZnSe NPs and Zn2+ triggered phytotoxicity which in turn provoked the plants’ defense system. The changes in antioxidant activities confirmed a higher toxicity by Zn2+ ions in comparison with ZnSe NPs. It means that the considered ions are more hazardous to the living organisms than the nanoparticles.
Original language | English |
---|---|
Pages (from-to) | 298-307 |
Number of pages | 10 |
Journal | Journal of Environmental Management |
Volume | 226 |
DOIs | |
Publication status | Published - 15 Nov 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018
Keywords
- Enzymatic antioxidants
- Lemna minor
- Nonenzymatic antioxidants
- Phytotoxicity
- ZnSe nanostructures