TiO2-decorated porous carbon nanofiber interlayer for Li-S batteries

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Lithium-sulfur (Li-S) batteries are the most promising energy storage systems owing to their high energy density. However, shuttling of polysulfides detracts the electrochemical performance of Li-S batteries and thus prevents the commercialization of Li-S batteries. Here, TiO2@porous carbon nanofibers (TiO2@PCNFs) are fabricatedviacombining electrospinning and electrospraying techniques and the resultant TiO2@PCNFs are evaluated for use as an interlayer in Li-S batteries. TiO2nanoparticles on PCNFs are observed from SEM and TEM images. A high initial discharge capacity of 1510 mA h g-1is achieved owing to the novel approach of electrospinning the carbon precursor and electrospraying TiO2nanoparticles simultaneously. In this approach TiO2nanoparticles capture polysulfides with strong interaction and the PCNFs with high conductivity recycle and re-use the adsorbed polysulfides, thus leading to high reversible capacity and stable cycling performance. A high reversible capacity of 967 mA h g-1is reached after 200 cycles at 0.2C. The cell with the TiO2@PCNF interlayer also delivers a reversible capacity of around 1100 mA h g-1at 1C, while the cell without the interlayer exhibits a lower capacity of 400 mA h g-1. Therefore, this work presents a novel approach for designing interlayer materials with exceptional electrochemical performance for high performance Li-S batteries.

Original languageEnglish
Pages (from-to)16570-16575
Number of pages6
JournalRSC Advances
Volume10
Issue number28
DOIs
Publication statusPublished - 28 Apr 2020

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry 2020.

Fingerprint

Dive into the research topics of 'TiO2-decorated porous carbon nanofiber interlayer for Li-S batteries'. Together they form a unique fingerprint.

Cite this